Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1999, Volume 35, Number 1, Pages 43–50 (Mi de9853)  

This article is cited in 5 scientific papers (total in 5 papers)

Ordinary Differential Equations

Order characteristics of existence properties of strong linear finite-dimensional differential models

A. V. Daneeva, V. A. Rusanovb

a Irkutsk State Technical University
b Irkutsk Computer Centre, Siberian Branch of RAS
Received: 25.03.1997
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. V. Daneev, V. A. Rusanov, “Order characteristics of existence properties of strong linear finite-dimensional differential models”, Differ. Uravn., 35:1 (1999), 43–50; Differ. Equ., 35:1 (1999), 42–49
Citation in format AMSBIB
\Bibitem{DanRus99}
\by A.~V.~Daneev, V.~A.~Rusanov
\paper Order characteristics of existence properties of strong linear finite-dimensional differential models
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 1
\pages 43--50
\mathnet{http://mi.mathnet.ru/de9853}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1723201}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 1
\pages 42--49
Linking options:
  • https://www.mathnet.ru/eng/de9853
  • https://www.mathnet.ru/eng/de/v35/i1/p43
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024