|
Numerical methods
Estimates for the rate of convergence of the difference approximation of the Dirichlet problem for the equation $-\Delta u+\sum_{|\alpha|\le1}(-1)^{|\alpha|}D^\alpha q_\alpha(x)u=f(x)$ for $q_\alpha(x)\in W_\infty^{\lambda|\alpha|}(\Omega)$, $\lambda\in(0,1]$
S. A. Voitsekhovskii, V. L. Makarov, Yu. I. Rybak National Taras Shevchenko University of Kyiv
Received: 16.02.1987
Citation:
S. A. Voitsekhovskii, V. L. Makarov, Yu. I. Rybak, “Estimates for the rate of convergence of the difference approximation of the Dirichlet problem for the equation $-\Delta u+\sum_{|\alpha|\le1}(-1)^{|\alpha|}D^\alpha q_\alpha(x)u=f(x)$ for $q_\alpha(x)\in W_\infty^{\lambda|\alpha|}(\Omega)$, $\lambda\in(0,1]$”, Differ. Uravn., 24:11 (1988), 1987–1994; Differ. Equ., 24:11 (1988), 1338–1344
Linking options:
https://www.mathnet.ru/eng/de9316 https://www.mathnet.ru/eng/de/v24/i11/p1987
|
Statistics & downloads: |
Abstract page: | 109 | Full-text PDF : | 46 |
|