Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1996, Volume 32, Number 6, Pages 759–768 (Mi de9016)  

Ordinary Differential Equations

Componentwise estimates for the spectral function of a selfadjoint extension on the line $\mathbf R$ of the Schrödinger operator with a matrix potential that satisfies the Kato condition

A. V. Kurkina

Lomonosov Moscow State University
Received: 20.02.1996
Bibliographic databases:
Document Type: Article
UDC: 519.984.5
Language: Russian
Citation: A. V. Kurkina, “Componentwise estimates for the spectral function of a selfadjoint extension on the line $\mathbf R$ of the Schrödinger operator with a matrix potential that satisfies the Kato condition”, Differ. Uravn., 32:6 (1996), 759–768; Differ. Equ., 32:6 (1996), 767–775
Citation in format AMSBIB
\Bibitem{Kur96}
\by A.~V.~Kurkina
\paper Componentwise estimates for the spectral function of a selfadjoint extension on the line $\mathbf R$ of the Schr\"odinger operator with a matrix potential that satisfies the Kato condition
\jour Differ. Uravn.
\yr 1996
\vol 32
\issue 6
\pages 759--768
\mathnet{http://mi.mathnet.ru/de9016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1444925}
\transl
\jour Differ. Equ.
\yr 1996
\vol 32
\issue 6
\pages 767--775
Linking options:
  • https://www.mathnet.ru/eng/de9016
  • https://www.mathnet.ru/eng/de/v32/i6/p759
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:86
    Full-text PDF :36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024