Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1996, Volume 32, Number 5, Pages 661–669 (Mi de9000)  

This article is cited in 1 scientific paper (total in 1 paper)

Numerical methods. Equations in finite differences

On Galerkin's finite element method for singularly perturbed parabolic initial-boundary value problems. I. Main result and estimates for the norms of projectors

I. A. Blatov

Voronezh State University
Received: 11.10.1994
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. A. Blatov, “On Galerkin's finite element method for singularly perturbed parabolic initial-boundary value problems. I. Main result and estimates for the norms of projectors”, Differ. Uravn., 32:5 (1996), 661–669; Differ. Equ., 32:5 (1996), 668–678
Citation in format AMSBIB
\Bibitem{Bla96}
\by I.~A.~Blatov
\paper On Galerkin's finite element method for singularly perturbed parabolic initial-boundary value problems. I. Main result and estimates for the norms of projectors
\jour Differ. Uravn.
\yr 1996
\vol 32
\issue 5
\pages 661--669
\mathnet{http://mi.mathnet.ru/de9000}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1435351}
\transl
\jour Differ. Equ.
\yr 1996
\vol 32
\issue 5
\pages 668--678
Linking options:
  • https://www.mathnet.ru/eng/de9000
  • https://www.mathnet.ru/eng/de/v32/i5/p661
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024