Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1994, Volume 30, Number 12, Pages 2043–2050 (Mi de8504)  

Ordinary Differential Equations

Componentwise equiconvergence with a trigonometric series of expansions in root vector functions of the Schrödinger operator with matrix potential and a diagonal-matrix eigenvalue

A. V. Dyadechko

Moscow
Received: 26.07.1994
Bibliographic databases:
Document Type: Article
UDC: 517.984.5
Language: Russian
Citation: A. V. Dyadechko, “Componentwise equiconvergence with a trigonometric series of expansions in root vector functions of the Schrödinger operator with matrix potential and a diagonal-matrix eigenvalue”, Differ. Uravn., 30:12 (1994), 2043–2050; Differ. Equ., 30:12 (1994), 1878–1885
Citation in format AMSBIB
\Bibitem{Dya94}
\by A.~V.~Dyadechko
\paper Componentwise equiconvergence with a trigonometric series of expansions in root vector functions of the Schr\"odinger operator with matrix potential and a diagonal-matrix eigenvalue
\jour Differ. Uravn.
\yr 1994
\vol 30
\issue 12
\pages 2043--2050
\mathnet{http://mi.mathnet.ru/de8504}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1383711}
\transl
\jour Differ. Equ.
\yr 1994
\vol 30
\issue 12
\pages 1878--1885
Linking options:
  • https://www.mathnet.ru/eng/de8504
  • https://www.mathnet.ru/eng/de/v30/i12/p2043
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:93
    Full-text PDF :40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024