Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1994, Volume 30, Number 2, Pages 292–301 (Mi de8297)  

Numerical methods

FD-schemes of any order of accuracy (uniform with respect to $\epsilon$) for singularly perturbed systems of second-order ordinary differential equations with piecewise-smooth coefficients

V. L. Makarov, V. V. Guminsky

National University of Kyiv
Received: 31.12.1992
Bibliographic databases:
Document Type: Article
UDC: 519.62
Language: Russian
Citation: V. L. Makarov, V. V. Guminsky, “FD-schemes of any order of accuracy (uniform with respect to $\epsilon$) for singularly perturbed systems of second-order ordinary differential equations with piecewise-smooth coefficients”, Differ. Uravn., 30:2 (1994), 292–301; Differ. Equ., 30:2 (1994), 267–275
Citation in format AMSBIB
\Bibitem{MakGum94}
\by V.~L.~Makarov, V.~V.~Guminsky
\paper FD-schemes of any order of accuracy (uniform with respect to $\epsilon$) for singularly perturbed systems of second-order ordinary differential equations with piecewise-smooth coefficients
\jour Differ. Uravn.
\yr 1994
\vol 30
\issue 2
\pages 292--301
\mathnet{http://mi.mathnet.ru/de8297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1299411}
\transl
\jour Differ. Equ.
\yr 1994
\vol 30
\issue 2
\pages 267--275
Linking options:
  • https://www.mathnet.ru/eng/de8297
  • https://www.mathnet.ru/eng/de/v30/i2/p292
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024