Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1994, Volume 30, Number 2, Pages 197–203 (Mi de8287)  

This article is cited in 1 scientific paper (total in 1 paper)

Ordinary Differential Equations

Sufficient conditions for the satisfaction of a Hilbert-type inequality in a system of root functions of a second-order ordinary differential operator

A. A. Malov

Lomonosov Moscow State University
Full-text PDF (803 kB) Citations (1)
Received: 17.08.1993
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
Language: Russian
Citation: A. A. Malov, “Sufficient conditions for the satisfaction of a Hilbert-type inequality in a system of root functions of a second-order ordinary differential operator”, Differ. Uravn., 30:2 (1994), 197–203; Differ. Equ., 30:2 (1994), 177–183
Citation in format AMSBIB
\Bibitem{Mal94}
\by A.~A.~Malov
\paper Sufficient conditions for the satisfaction of a Hilbert-type inequality in a system of root functions of a second-order ordinary differential operator
\jour Differ. Uravn.
\yr 1994
\vol 30
\issue 2
\pages 197--203
\mathnet{http://mi.mathnet.ru/de8287}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1299401}
\transl
\jour Differ. Equ.
\yr 1994
\vol 30
\issue 2
\pages 177--183
Linking options:
  • https://www.mathnet.ru/eng/de8287
  • https://www.mathnet.ru/eng/de/v30/i2/p197
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024