Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1976, Volume 12, Number 10, Pages 1852–1865 (Mi de2896)  

This article is cited in 2 scientific papers (total in 2 papers)

Partial Differential Equations

The asymptotic expansion of the solution of a second order elliptic equation with a small parameter multiplying the highest derivatives

E. F. Lelikova

Institute of Mathematics and Mechanics, Ural Branch of the AS of USSR
Received: 21.04.1975
Bibliographic databases:
Document Type: Article
UDC: 517.946
Language: Russian
Citation: E. F. Lelikova, “The asymptotic expansion of the solution of a second order elliptic equation with a small parameter multiplying the highest derivatives”, Differ. Uravn., 12:10 (1976), 1852–1865
Citation in format AMSBIB
\Bibitem{Lel76}
\by E.~F.~Lelikova
\paper The asymptotic expansion of the solution of a second order elliptic equation with a small parameter multiplying the highest derivatives
\jour Differ. Uravn.
\yr 1976
\vol 12
\issue 10
\pages 1852--1865
\mathnet{http://mi.mathnet.ru/de2896}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=445100}
\zmath{https://zbmath.org/?q=an:0338.35006}
Linking options:
  • https://www.mathnet.ru/eng/de2896
  • https://www.mathnet.ru/eng/de/v12/i10/p1852
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :51
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024