Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2002, Volume 38, Number 2, Pages 206–215 (Mi de10549)  

This article is cited in 3 scientific papers (total in 3 papers)

Ordinary Differential Equations

Higher-Order Spectral Asymptotics for the Sturm–Liouville Operator

V. A. Chernyatinab

a Lomonosov Moscow State University
b University of Szczecin, Poland
Received: 18.09.2001
English version:
Differential Equations, 2002, Volume 38, Issue 2, Pages 217–227
DOI: https://doi.org/10.1023/A:1015381328853
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
Language: Russian
Citation: V. A. Chernyatin, “Higher-Order Spectral Asymptotics for the Sturm–Liouville Operator”, Differ. Uravn., 38:2 (2002), 206–215; Differ. Equ., 38:2 (2002), 217–227
Citation in format AMSBIB
\Bibitem{Che02}
\by V.~A.~Chernyatin
\paper Higher-Order Spectral Asymptotics for the Sturm--Liouville Operator
\jour Differ. Uravn.
\yr 2002
\vol 38
\issue 2
\pages 206--215
\mathnet{http://mi.mathnet.ru/de10549}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2003851}
\transl
\jour Differ. Equ.
\yr 2002
\vol 38
\issue 2
\pages 217--227
\crossref{https://doi.org/10.1023/A:1015381328853}
Linking options:
  • https://www.mathnet.ru/eng/de10549
  • https://www.mathnet.ru/eng/de/v38/i2/p206
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:142
    Full-text PDF :60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024