Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2002, Volume 38, Number 1, Pages 81–86 (Mi de10531)  

Partial Differential Equations

An Application of the Contour Integral Method to a Mixed Problem of Dynamic Impact Theory

S. I. Gaiduka, N. J. Yurchukb

a Institute of Mathematics of the National Academy of Sciences of Belarus
b Belarusian State University, Minsk
Received: 16.11.1999
English version:
Differential Equations, 2002, Volume 38, Issue 1, Pages 87–92
DOI: https://doi.org/10.1023/A:1014807710622
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: S. I. Gaiduk, N. J. Yurchuk, “An Application of the Contour Integral Method to a Mixed Problem of Dynamic Impact Theory”, Differ. Uravn., 38:1 (2002), 81–86; Differ. Equ., 38:1 (2002), 87–92
Citation in format AMSBIB
\Bibitem{GaiYur02}
\by S.~I.~Gaiduk, N.~J.~Yurchuk
\paper An Application of the Contour Integral Method to a Mixed Problem of Dynamic Impact Theory
\jour Differ. Uravn.
\yr 2002
\vol 38
\issue 1
\pages 81--86
\mathnet{http://mi.mathnet.ru/de10531}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2007323}
\transl
\jour Differ. Equ.
\yr 2002
\vol 38
\issue 1
\pages 87--92
\crossref{https://doi.org/10.1023/A:1014807710622}
Linking options:
  • https://www.mathnet.ru/eng/de10531
  • https://www.mathnet.ru/eng/de/v38/i1/p81
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024