Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2001, Volume 37, Number 10, Pages 1311–1329 (Mi de10464)  

This article is cited in 3 scientific papers (total in 3 papers)

Partial Differential Equations

The Neumann Problem with Boundary Condition on an Open Plane Surface

A. V. Setukha

Military Aviation Engineering University, Moscow
Received: 15.03.2001
English version:
Differential Equations, 2001, Volume 37, Issue 10, Pages 1376–1398
DOI: https://doi.org/10.1023/A:1013364130530
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: A. V. Setukha, “The Neumann Problem with Boundary Condition on an Open Plane Surface”, Differ. Uravn., 37:10 (2001), 1311–1329; Differ. Equ., 37:10 (2001), 1376–1398
Citation in format AMSBIB
\Bibitem{Set01}
\by A.~V.~Setukha
\paper The Neumann Problem with Boundary Condition on an Open Plane Surface
\jour Differ. Uravn.
\yr 2001
\vol 37
\issue 10
\pages 1311--1329
\mathnet{http://mi.mathnet.ru/de10464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1945241}
\transl
\jour Differ. Equ.
\yr 2001
\vol 37
\issue 10
\pages 1376--1398
\crossref{https://doi.org/10.1023/A:1013364130530}
Linking options:
  • https://www.mathnet.ru/eng/de10464
  • https://www.mathnet.ru/eng/de/v37/i10/p1311
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:149
    Full-text PDF :56
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024