Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2001, Volume 37, Number 8, Pages 1115–1117 (Mi de10433)  

Short Communications

Complex Powers of Some Second-Order Differential Operators with Constant Complex Coefficients in $L_p$-Spaces

A. V. Abramyan, V. A. Nogin

Rostov State University
Received: 10.09.1999
English version:
Differential Equations, 2001, Volume 37, Issue 8, Pages 1168–1170
DOI: https://doi.org/10.1023/A:1012479704641
Bibliographic databases:
Document Type: Article
UDC: 517.983
Language: Russian
Citation: A. V. Abramyan, V. A. Nogin, “Complex Powers of Some Second-Order Differential Operators with Constant Complex Coefficients in $L_p$-Spaces”, Differ. Uravn., 37:8 (2001), 1115–1117; Differ. Equ., 37:8 (2001), 1168–1170
Citation in format AMSBIB
\Bibitem{AbrNog01}
\by A.~V.~Abramyan, V.~A.~Nogin
\paper Complex Powers of Some Second-Order Differential Operators with Constant Complex Coefficients in $L_p$-Spaces
\jour Differ. Uravn.
\yr 2001
\vol 37
\issue 8
\pages 1115--1117
\mathnet{http://mi.mathnet.ru/de10433}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1885904}
\transl
\jour Differ. Equ.
\yr 2001
\vol 37
\issue 8
\pages 1168--1170
\crossref{https://doi.org/10.1023/A:1012479704641}
Linking options:
  • https://www.mathnet.ru/eng/de10433
  • https://www.mathnet.ru/eng/de/v37/i8/p1115
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:106
    Full-text PDF :59
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024