Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2001, Volume 37, Number 5, Pages 616–627 (Mi de10375)  

Ordinary Differential Equations

Necessary Properties of Boundary Degree Sets of Solutions to Linear Pfaff Systems

N. A. Izobova, E. N. Krupchikb

a Institute of Mathematics of the National Academy of Sciences of Belarus
b Belarusian State University, Minsk
Received: 07.08.2000
English version:
Differential Equations, 2001, Volume 37, Issue 5, Pages 647–658
DOI: https://doi.org/10.1023/A:1019212530919
Bibliographic databases:
Document Type: Article
UDC: 517.936
Language: Russian
Citation: N. A. Izobov, E. N. Krupchik, “Necessary Properties of Boundary Degree Sets of Solutions to Linear Pfaff Systems”, Differ. Uravn., 37:5 (2001), 616–627; Differ. Equ., 37:5 (2001), 647–658
Citation in format AMSBIB
\Bibitem{IzoKru01}
\by N.~A.~Izobov, E.~N.~Krupchik
\paper Necessary Properties of Boundary Degree Sets of Solutions to Linear Pfaff Systems
\jour Differ. Uravn.
\yr 2001
\vol 37
\issue 5
\pages 616--627
\mathnet{http://mi.mathnet.ru/de10375}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1850725}
\transl
\jour Differ. Equ.
\yr 2001
\vol 37
\issue 5
\pages 647--658
\crossref{https://doi.org/10.1023/A:1019212530919}
Linking options:
  • https://www.mathnet.ru/eng/de10375
  • https://www.mathnet.ru/eng/de/v37/i5/p616
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:166
    Full-text PDF :41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024