Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2001, Volume 37, Number 2, Pages 242–251 (Mi de10331)  

Partial Differential Equations

The Inverses of Solvable Extensions and Proper Restrictions of the Operation $-\operatorname{div}\operatorname{grad}$ Are Not Volterra Operators

K. M. Medvedev

Samara State Teacher's Training University
Received: 18.01.1999
English version:
Differential Equations, 2001, Volume 37, Issue 2, Pages 261–271
DOI: https://doi.org/10.1023/A:1019221910929
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: K. M. Medvedev, “The Inverses of Solvable Extensions and Proper Restrictions of the Operation $-\operatorname{div}\operatorname{grad}$ Are Not Volterra Operators”, Differ. Uravn., 37:2 (2001), 242–251; Differ. Equ., 37:2 (2001), 261–271
Citation in format AMSBIB
\Bibitem{Med01}
\by K.~M.~Medvedev
\paper The Inverses of Solvable Extensions and Proper Restrictions of the Operation $-\operatorname{div}\operatorname{grad}$ Are Not Volterra Operators
\jour Differ. Uravn.
\yr 2001
\vol 37
\issue 2
\pages 242--251
\mathnet{http://mi.mathnet.ru/de10331}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1849442}
\transl
\jour Differ. Equ.
\yr 2001
\vol 37
\issue 2
\pages 261--271
\crossref{https://doi.org/10.1023/A:1019221910929}
Linking options:
  • https://www.mathnet.ru/eng/de10331
  • https://www.mathnet.ru/eng/de/v37/i2/p242
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025