Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2000, Volume 36, Number 11, Pages 1501–1505 (Mi de10264)  

This article is cited in 5 scientific papers (total in 5 papers)

Ordinary Differential Equations

An inner estimate of the attainability set of Brockett’s nonlinear integrator

M. S. Nikol'skii

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (605 kB) Citations (5)
Received: 12.06.2000
English version:
Differential Equations, 2000, Volume 36, Issue 11, Pages 1647–1651
DOI: https://doi.org/10.1007/BF02757366
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: M. S. Nikol'skii, “An inner estimate of the attainability set of Brockett’s nonlinear integrator”, Differ. Uravn., 36:11 (2000), 1501–1505; Differ. Equ., 36:11 (2000), 1647–1651
Citation in format AMSBIB
\Bibitem{Nik00}
\by M.~S.~Nikol'skii
\paper An inner estimate of the attainability set of Brockett’s nonlinear integrator
\jour Differ. Uravn.
\yr 2000
\vol 36
\issue 11
\pages 1501--1505
\mathnet{http://mi.mathnet.ru/de10264}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1841472}
\transl
\jour Differ. Equ.
\yr 2000
\vol 36
\issue 11
\pages 1647--1651
\crossref{https://doi.org/10.1007/BF02757366}
Linking options:
  • https://www.mathnet.ru/eng/de10264
  • https://www.mathnet.ru/eng/de/v36/i11/p1501
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025