Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 2000, Volume 36, Number 9, Pages 1155–1159 (Mi de10212)  

This article is cited in 2 scientific papers (total in 2 papers)

Partial Differential Equations

On the Schrödinger equation with potential concentrated on a surface

M. V. Korovina

Lomonosov Moscow State University
Full-text PDF (752 kB) Citations (2)
Received: 15.04.1999
English version:
Differential Equations, 2000, Volume 36, Issue 9, Pages 1279–1283
DOI: https://doi.org/10.1007/BF02754302
Bibliographic databases:
Document Type: Article
UDC: 517.956.224
Language: Russian
Citation: M. V. Korovina, “On the Schrödinger equation with potential concentrated on a surface”, Differ. Uravn., 36:9 (2000), 1155–1159; Differ. Equ., 36:9 (2000), 1279–1283
Citation in format AMSBIB
\Bibitem{Kor00}
\by M.~V.~Korovina
\paper On the Schr\"odinger equation with potential concentrated on a surface
\jour Differ. Uravn.
\yr 2000
\vol 36
\issue 9
\pages 1155--1159
\mathnet{http://mi.mathnet.ru/de10212}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1838581}
\transl
\jour Differ. Equ.
\yr 2000
\vol 36
\issue 9
\pages 1279--1283
\crossref{https://doi.org/10.1007/BF02754302}
Linking options:
  • https://www.mathnet.ru/eng/de10212
  • https://www.mathnet.ru/eng/de/v36/i9/p1155
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:122
    Full-text PDF :50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024