Differentsial'nye Uravneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Differ. Uravn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Differentsial'nye Uravneniya, 1999, Volume 35, Number 12, Pages 1709–1711 (Mi de10058)  

This article is cited in 3 scientific papers (total in 3 papers)

Short Communications

A mixture of the Leray–Schauder and the Poincaré–Andronov methods in the problem of periodic solutions of ordinary differential equations

V. V. Filippov

Lomonosov Moscow State University
Full-text PDF (576 kB) Citations (3)
Received: 07.09.1999
Bibliographic databases:
Document Type: Article
UDC: 517.911
Language: Russian
Citation: V. V. Filippov, “A mixture of the Leray–Schauder and the Poincaré–Andronov methods in the problem of periodic solutions of ordinary differential equations”, Differ. Uravn., 35:12 (1999), 1709–1711; Differ. Equ., 35:12 (1999), 1736–1739
Citation in format AMSBIB
\Bibitem{Fil99}
\by V.~V.~Filippov
\paper A mixture of the Leray--Schauder and the Poincar\'e--Andronov methods in the problem of periodic solutions of ordinary differential equations
\jour Differ. Uravn.
\yr 1999
\vol 35
\issue 12
\pages 1709--1711
\mathnet{http://mi.mathnet.ru/de10058}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1774997}
\transl
\jour Differ. Equ.
\yr 1999
\vol 35
\issue 12
\pages 1736--1739
Linking options:
  • https://www.mathnet.ru/eng/de10058
  • https://www.mathnet.ru/eng/de/v35/i12/p1709
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024