Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 62–67
DOI: https://doi.org/10.31857/S2686954320040128
(Mi danma96)
 

INFORMATICS

New statistical kernel-projection estimator in the Monte Carlo method

G. A. Mikhailovab, N. V. Trachevaab, S. A. Uhinovab

a Institute of Computational Mathematics and Mathematical Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation
References:
Abstract: The statistical kernel estimator in the Monte Carlo method is usually optimized based on the preliminary construction of a “microgrouped” sample of values of the variable under study. Even for the two-dimensional case, such optimization is very difficult. Accordingly, we propose a combined (kernel-projection) statistical estimator of the two-dimensional distribution density: a kernel estimator is constructed for the first (main) variable, and a projection estimator, for the second variable. In this case, for each kernel interval determined by the microgrouped sample, the coefficients of a particular orthogonal decomposition of the conditional probability density are statistically estimated based on preliminary results for the “micro intervals”. An important result of this work is the mean-square optimization of such an estimator under assumptions made about the convergence rate of the orthogonal decomposition in use. The constructed estimator is verified by evaluating the bidirectional distribution of a radiation flux passing through a layer of scattering and absorbing substance.
Keywords: kernel density estimator, projection estimator, kernel-projection estimator, Monte Carlo method.
Funding agency Grant number
Russian Foundation for Basic Research 18–01–00356
This work was supported by the Russian Foundation for Basic Research, project no. 18-01-00356.
Received: 12.03.2020
Revised: 23.05.2020
Accepted: 23.05.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 313–317
DOI: https://doi.org/10.1134/S1064562420040122
Bibliographic databases:
Document Type: Article
UDC: 519.245
Language: Russian
Citation: G. A. Mikhailov, N. V. Tracheva, S. A. Uhinov, “New statistical kernel-projection estimator in the Monte Carlo method”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 62–67; Dokl. Math., 102:1 (2020), 313–317
Citation in format AMSBIB
\Bibitem{MikTraUhi20}
\by G.~A.~Mikhailov, N.~V.~Tracheva, S.~A.~Uhinov
\paper New statistical kernel-projection estimator in the Monte Carlo method
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 62--67
\mathnet{http://mi.mathnet.ru/danma96}
\crossref{https://doi.org/10.31857/S2686954320040128}
\zmath{https://zbmath.org/?q=an:7424618}
\elib{https://elibrary.ru/item.asp?id=43795348}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 313--317
\crossref{https://doi.org/10.1134/S1064562420040122}
Linking options:
  • https://www.mathnet.ru/eng/danma96
  • https://www.mathnet.ru/eng/danma/v493/p62
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024