Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 38–41
DOI: https://doi.org/10.31857/S2686954320040153
(Mi danma91)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

Coadjoint orbits of three-step free nilpotent Lie groups and time-optimal control problem

A. V. Podobryaev

Ailamazyan Program Systems Institute of Russian Academy of Sciences, Pereslavl-Zalesskii, Russian Federation
Full-text PDF (141 kB) Citations (1)
References:
Abstract: We describe coadjoint orbits for three-step free nilpotent Lie groups. It turns out that two-dimensional orbits have the same structure as coadjoint orbits of the Heisenberg group and the Engel group. We consider a time-optimal problem on three-step free nilpotent Lie groups with a set of admissible velocities in the first level of the Lie algebra. The behavior of normal extremal trajectories with initial covectors lying in two-dimensional coadjoint orbits is studied. Under some broad conditions on the set of admissible velocities (in particular, in the sub-Riemannian case) the corresponding extremal controls are periodic, constant, or asymptotically constant.
Keywords: Carnot group, coadjoint orbits, time-optimal control problem, sub-Riemannian geometry, sub-Finsler geometry.
Funding agency Grant number
Russian Science Foundation 17–11–01387-П
This work was supported by the Russian Science Foundation project no. 17-11-01387-P and was performed at Ailamazyan Program Systems Institute of the Russian Academy of Sciences.
Presented: R. V. Gamkrelidze
Received: 04.06.2020
Revised: 09.06.2020
Accepted: 09.06.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 293–295
DOI: https://doi.org/10.1134/S1064562420040158
Bibliographic databases:
Document Type: Article
UDC: 517.977
Language: Russian
Citation: A. V. Podobryaev, “Coadjoint orbits of three-step free nilpotent Lie groups and time-optimal control problem”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 38–41; Dokl. Math., 102:1 (2020), 293–295
Citation in format AMSBIB
\Bibitem{Pod20}
\by A.~V.~Podobryaev
\paper Coadjoint orbits of three-step free nilpotent Lie groups and time-optimal control problem
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 38--41
\mathnet{http://mi.mathnet.ru/danma91}
\crossref{https://doi.org/10.31857/S2686954320040153}
\zmath{https://zbmath.org/?q=an:1482.37101}
\elib{https://elibrary.ru/item.asp?id=43795343}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 293--295
\crossref{https://doi.org/10.1134/S1064562420040158}
Linking options:
  • https://www.mathnet.ru/eng/danma91
  • https://www.mathnet.ru/eng/danma/v493/p38
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:89
    Full-text PDF :29
    References:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024