Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 26–31
DOI: https://doi.org/10.31857/S2686954320040141
(Mi danma90)
 

This article is cited in 9 scientific papers (total in 9 papers)

MATHEMATICS

On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity

N. N. Nefedova, O. V. Rudenkoabc

a Lomonosov Moscow State University, Moscow, Russian Federation
b Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russian Federation
c Institute of Physics of the Earth, Russian Academy of Scienses, Moscow, Russian Federation
Full-text PDF (189 kB) Citations (9)
References:
Abstract: A singularly perturbed initial-boundary value problem for a parabolic equation, which is called in applications an equation of Burgers type, is considered. Existence conditions are obtained, and an asymptotic approximation of a new class of solutions with a moving front is constructed. The results are applied to problems with quadratic and modular nonlinearity and nonlinear amplification. The influence of nonlinear amplification on the propagation and destruction of fronts is revealed. Estimates for the blow-up localization and blow-up time are obtained.
Keywords: singularly perturbed parabolic problems, equations of Burgers type, reaction–diffusion–advection equations, internal layers, fronts, asymptotic, methods, blow-up of solutions.
Funding agency Grant number
Russian Science Foundation 18–11–00042
This work was supported by the Russian Science Foundation, project no. 18-11-00042.
Received: 26.05.2020
Revised: 08.06.2020
Accepted: 09.06.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 283–287
DOI: https://doi.org/10.1134/S1064562420040146
Bibliographic databases:
Document Type: Article
UDC: 534.222
Language: Russian
Citation: N. N. Nefedov, O. V. Rudenko, “On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 26–31; Dokl. Math., 102:1 (2020), 283–287
Citation in format AMSBIB
\Bibitem{NefRud20}
\by N.~N.~Nefedov, O.~V.~Rudenko
\paper On the motion, amplification, and blow-up of fronts in Burgers-type equations with quadratic and modular nonlinearity
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 26--31
\mathnet{http://mi.mathnet.ru/danma90}
\crossref{https://doi.org/10.31857/S2686954320040141}
\zmath{https://zbmath.org/?q=an:1477.35017}
\elib{https://elibrary.ru/item.asp?id=43795341}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 283--287
\crossref{https://doi.org/10.1134/S1064562420040146}
Linking options:
  • https://www.mathnet.ru/eng/danma90
  • https://www.mathnet.ru/eng/danma/v493/p26
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:124
    Full-text PDF :50
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024