|
This article is cited in 2 scientific papers (total in 2 papers)
MATHEMATICS
Geometry of factorization identities for discriminants
E. N. Mikhalkin, V. A. Stepanenko, A. K. Tsikh Siberian Federal University, Krasnoyarsk, Russian Federation
Abstract:
Let $\Delta_n$ be the discriminant of a general polynomial of degree $n$ and $\mathcal{N}$ be the Newton polytope of $\Delta_n$. We give a geometric proof of the fact that the truncations of $\Delta_n$ to faces of $\mathcal{N}$ are equal to products of discriminants of lesser $n$ degrees. The proof is based on the blow-up property of the logarithmic Gauss map for the zero set of $\Delta_n$.
Keywords:
discriminant, Newton polytope, logarithmic Gauss map, Horn–Kapranov parametrization.
Citation:
E. N. Mikhalkin, V. A. Stepanenko, A. K. Tsikh, “Geometry of factorization identities for discriminants”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 21–25; Dokl. Math., 102:1 (2020), 279–282
Linking options:
https://www.mathnet.ru/eng/danma89 https://www.mathnet.ru/eng/danma/v493/p21
|
Statistics & downloads: |
Abstract page: | 127 | Full-text PDF : | 73 | References: | 17 |
|