Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 18–20
DOI: https://doi.org/10.31857/S2686954320040074
(Mi danma88)
 

MATHEMATICS

On the dimension of the congruence centralizer

Kh. D. Ikramov

Lomonosov Moscow State University, Moscow, Russian Federation
References:
Abstract: Let $A$ be a nonsingular complex $(n\times n)$ matrix. The congruence centralizer of $A$ is the collection $\mathscr{L}$ of matrices $X$ satisfying the relation $X^*AX=A$. The dimension of $\mathscr{L}$ as a real variety in the matrix space $M_n(\mathbf{C})$ is shown to be equal to the difference of the real dimensions of the following two sets: the conventional centralizer of the matrix $A^{-*}A$, called the cosquare of $A$, and the matrix set described by the relation $X=A^{-1}X^*A$. This dimensional formula is the complex analog of the classical result of A. Voss, which refers to another type of involution in $M_n(\mathbf{C})$.
Keywords: $^*$-congruence, congruence centralizer, cosquare, canonical form with respect to congruences.
Presented: E. E. Tyrtyshnikov
Received: 02.04.2020
Revised: 02.04.2020
Accepted: 20.04.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 276–278
DOI: https://doi.org/10.1134/S1064562420040079
Bibliographic databases:
Document Type: Article
UDC: 512.643
Language: Russian
Citation: Kh. D. Ikramov, “On the dimension of the congruence centralizer”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 18–20; Dokl. Math., 102:1 (2020), 276–278
Citation in format AMSBIB
\Bibitem{Ikr20}
\by Kh.~D.~Ikramov
\paper On the dimension of the congruence centralizer
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 18--20
\mathnet{http://mi.mathnet.ru/danma88}
\crossref{https://doi.org/10.31857/S2686954320040074}
\zmath{https://zbmath.org/?q=an:1477.15005}
\elib{https://elibrary.ru/item.asp?id=43795339}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 276--278
\crossref{https://doi.org/10.1134/S1064562420040079}
Linking options:
  • https://www.mathnet.ru/eng/danma88
  • https://www.mathnet.ru/eng/danma/v493/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:116
    Full-text PDF :40
    References:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024