|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICS
Stationary spherically symmetric solutions of the Vlasov–Poisson system in the three-dimensional case
J. Batta, E. Jörna, A. L. Skubachevskiibc a Mathematisches Institut, Ludwig-Maximilians-Universität München, Germany
b Mathematical Institute of the RUDN University, Moscow, Russia
c Moscow Center for Fundamental and Applied Mathematics, Moscow, Russian Federation
Abstract:
We consider the three-dimensional stationary Vlasov–Poisson system of equations with respect to the distribution function of the gravitating matter $f=f_q(r,u)$, the local density $\rho=\rho(r)$, and the Newtonian potential $U=U(r)$, where $r:=|x|$, $u:=|v|$ ($(x,v)\in\mathbb R^3\times\mathbb R^3$ are the space–velocity coordinates), and $f$ is a function $q$ of the local energy $E:=U(r)+\dfrac{u^2}2$. For a given function $p=p(r)$, we obtain sufficient conditions for $p$ to be “extendable”. This means that there exists a stationary spherically symmetric solution $(f_q,\rho,U)$ of the Vlasov–Poisson system depending on the local energy $E$ such that $\rho=p$.
Keywords:
Vlasov–Poisson system, stationary spherically symmetric solution, stellar dynamics.
Citation:
J. Batt, E. Jörn, A. L. Skubachevskii, “Stationary spherically symmetric solutions of the Vlasov–Poisson system in the three-dimensional case”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 5–8; Dokl. Math., 102:1 (2020), 265–268
Linking options:
https://www.mathnet.ru/eng/danma85 https://www.mathnet.ru/eng/danma/v493/p5
|
Statistics & downloads: |
Abstract page: | 140 | Full-text PDF : | 60 | References: | 13 |
|