Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 92–96
DOI: https://doi.org/10.31857/S2686954320020186
(Mi danma80)
 

This article is cited in 5 scientific papers (total in 5 papers)

INFORMATICS

Problem of acoustic diagnostics of a damaged zone

I. B. Petrovab, V. I. Golubevab, A. V. Shevchenkoa

a Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russian Federation
b Scientific Research Institute for System Analysis of the Russian Academy of Sciences, Moscow, Russian Federation
Full-text PDF (285 kB) Citations (5)
References:
Abstract: The problem of seismic wave propagation from a source located in a well is considered. Acoustic equations are used to describe the dynamic behavior of the fluid. The damaged zone is described as a porous fluid-saturated medium by applying the Dorovsky model. The elastic approximation is used to describe the dynamic behavior of the surrounding rock. A unified algorithm based on the grid-characteristic approach with curvilinear grids is proposed for full-wave modeling in the entire computational domain. Its distinctive feature is that the necessary contact conditions on the boundary between media with different rheological properties are stated explicitly. The possibility of acoustic diagnostics of the heterogeneity of the damaged zone is numerically explored.
Keywords: mathematical modeling, grid-characteristic method, seismic survey process, porous media, Dorovsky model, damaged zone, fractured medium.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 0065-2019-0005
This work was performed within the state assignment at the Federal Research Center Scientific Research Institute for System Analysis of the Russian Academy of Sciences (basic scientific research GP 14), subject no. 0065-2019-0005 “Mathematical Modeling of Dynamic Processes in Deformable and Reacting Media on Multiprocessor Computer Systems”, project no. AAAA-A19-119011590092-6.
Received: 24.01.2020
Revised: 24.01.2020
Accepted: 29.02.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 250–253
DOI: https://doi.org/10.1134/S1064562420020180
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: I. B. Petrov, V. I. Golubev, A. V. Shevchenko, “Problem of acoustic diagnostics of a damaged zone”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 92–96; Dokl. Math., 101:3 (2020), 250–253
Citation in format AMSBIB
\Bibitem{PetGolShe20}
\by I.~B.~Petrov, V.~I.~Golubev, A.~V.~Shevchenko
\paper Problem of acoustic diagnostics of a damaged zone
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 92--96
\mathnet{http://mi.mathnet.ru/danma80}
\crossref{https://doi.org/10.31857/S2686954320020186}
\zmath{https://zbmath.org/?q=an:1477.74073}
\elib{https://elibrary.ru/item.asp?id=42930033}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 250--253
\crossref{https://doi.org/10.1134/S1064562420020180}
Linking options:
  • https://www.mathnet.ru/eng/danma80
  • https://www.mathnet.ru/eng/danma/v492/p92
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024