Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 495, Pages 91–94
DOI: https://doi.org/10.31857/S2686954320060168
(Mi danma8)
 

MATHEMATICS

Quantization of integrable systems with spectral parameter on a Riemann surface

O. K. Sheinman

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russian Federation
References:
Abstract: Given an integrable system defined by a Lax representation with spectral parameter on a Riemann surface, we construct a unitary projective representation of the corresponding Lie algebra of Hamiltonian vector fields by means of operators of covariant derivatives with respect to the Knizhnik–Zamolodchikov connection. It is a Dirac-type prequantization of the integrable system from a physical point of view. Simultaneously, it establishes a correspondence between integrable systems in question and conformal field theories. In the present paper, we focus on systems whose spectral curves possess a holomorphic involution. Examples are presented by Hitchin systems of the types $B_n$, $C_n$, $D_n$, and also of the type $A_n$ on hyperelliptic curves.
Keywords: integrable system, quantization, conformal field theory, Knizhnik–Zamolodchikov connection.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00157
This work was supported by the Russian Foundation for Basic Research, project no. 20-01-00157.
Presented: S. P. Novikov
Received: 19.08.2020
Revised: 19.08.2020
Accepted: 17.09.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 3, Pages 524–527
DOI: https://doi.org/10.1134/S1064562420060186
Bibliographic databases:
Document Type: Article
UDC: 514.84
Language: Russian
Citation: O. K. Sheinman, “Quantization of integrable systems with spectral parameter on a Riemann surface”, Dokl. RAN. Math. Inf. Proc. Upr., 495 (2020), 91–94; Dokl. Math., 102:3 (2020), 524–527
Citation in format AMSBIB
\Bibitem{She20}
\by O.~K.~Sheinman
\paper Quantization of integrable systems with spectral parameter on a Riemann surface
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 495
\pages 91--94
\mathnet{http://mi.mathnet.ru/danma8}
\crossref{https://doi.org/10.31857/S2686954320060168}
\zmath{https://zbmath.org/?q=an:7424680}
\elib{https://elibrary.ru/item.asp?id=44367210}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 3
\pages 524--527
\crossref{https://doi.org/10.1134/S1064562420060186}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000627403800019}
Linking options:
  • https://www.mathnet.ru/eng/danma8
  • https://www.mathnet.ru/eng/danma/v495/p91
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:112
    Full-text PDF :33
    References:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024