Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 89–91
DOI: https://doi.org/10.31857/S2686954320030091
(Mi danma79)
 

This article is cited in 3 scientific papers (total in 3 papers)

INFORMATICS

Asymptotics of the number of threshold functions and the singularity probability of random $\{\pm1\}$-matrices

A. A. Irmatov

Lomonosov Moscow State University, Moscow, Russian Federation
Full-text PDF (161 kB) Citations (3)
References:
Abstract: Two results concerning the number $P(2,n)$ of threshold functions and the singularity probability $\mathbb{P}_n$ of random $(n\times n)$ $\{\pm1\}$-matrices are established. The following asymptotics are obtained:
$$ P(2,n)\sim2\binom{2^n-1}{n}\text{ and }\mathbb{P}_n\sim n^2\cdot2^{1-n}\quad n\to\infty. $$
Keywords: threshold function, Bernoulli matrices, Möbius function, supermodular function, combinatorial flag.
Funding agency Grant number
Russian Foundation for Basic Research 18–01–00398 A
This work was supported in part by the Russian Foundation for Basic Research, grant no. 18-01-00398 A.
Presented: A. T. Fomenko
Received: 04.03.2020
Revised: 04.03.2020
Accepted: 19.03.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 247–249
DOI: https://doi.org/10.1134/S1064562420030096
Bibliographic databases:
Document Type: Article
UDC: 519.1, 519.7
Language: Russian
Citation: A. A. Irmatov, “Asymptotics of the number of threshold functions and the singularity probability of random $\{\pm1\}$-matrices”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 89–91; Dokl. Math., 101:3 (2020), 247–249
Citation in format AMSBIB
\Bibitem{Irm20}
\by A.~A.~Irmatov
\paper Asymptotics of the number of threshold functions and the singularity probability of random $\{\pm1\}$-matrices
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 89--91
\mathnet{http://mi.mathnet.ru/danma79}
\crossref{https://doi.org/10.31857/S2686954320030091}
\zmath{https://zbmath.org/?q=an:1474.60012}
\elib{https://elibrary.ru/item.asp?id=42930029}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 247--249
\crossref{https://doi.org/10.1134/S1064562420030096}
Linking options:
  • https://www.mathnet.ru/eng/danma79
  • https://www.mathnet.ru/eng/danma/v492/p89
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :33
    References:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024