Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 75–78
DOI: https://doi.org/10.31857/S2686954320030194
(Mi danma76)
 

MATHEMATICS

Bounded gaps between primes of special form

A. V. Shubin

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russian Federation
References:
Abstract: Let $0<\alpha$, $\sigma<1$ be arbitrary fixed constants, let $q_1<q_2<\dots<q_n<q_{n+1}<\dots$ be the set of primes satisfying the condition $\{q_n^\alpha\}<\sigma$ and indexed in ascending order, and let $m\ge1$ be any fixed integer. Using an analogue of the Bombieri–Vinogradov theorem for the above set of primes, upper bounds are obtained for the constants $c(m)$ such that the inequality $q_{n+m}-q_n\le c(m)$ holds for infinitely many $n$.
Keywords: consecutive primes, small gaps, fractional parts, bounded gaps, sieve method, Bombieri–Vinogradov theorem.
Presented: S. V. Konyagin
Received: 14.03.2020
Revised: 14.03.2020
Accepted: 21.03.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 235–238
DOI: https://doi.org/10.1134/S1064562420030199
Bibliographic databases:
Document Type: Article
UDC: 511.3
Language: Russian
Citation: A. V. Shubin, “Bounded gaps between primes of special form”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 75–78; Dokl. Math., 101:3 (2020), 235–238
Citation in format AMSBIB
\Bibitem{Shu20}
\by A.~V.~Shubin
\paper Bounded gaps between primes of special form
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 75--78
\mathnet{http://mi.mathnet.ru/danma76}
\crossref{https://doi.org/10.31857/S2686954320030194}
\zmath{https://zbmath.org/?q=an:1479.11164}
\elib{https://elibrary.ru/item.asp?id=42930017}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 235--238
\crossref{https://doi.org/10.1134/S1064562420030199}
Linking options:
  • https://www.mathnet.ru/eng/danma76
  • https://www.mathnet.ru/eng/danma/v492/p75
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:82
    Full-text PDF :29
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024