Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 54–57
DOI: https://doi.org/10.31857/S2686954320030133
(Mi danma72)
 

MATHEMATICS

Antipodal Krein graphs and distance-regular graphs close to them

A. A. Makhnev

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg, Russian Federation
References:
Abstract: An antipodal nonbipartite distance-regular graph $\Gamma$ of diameter 3 has an intersection array $\{k(r-1)c_2,1;1,c_2,k\}$ ($c_2<k-1$) and eigenvalues $k,n,-1$, and $-m$, where $n$ and $-m$ are the roots of the quadratic equation $x^2-(a_1-c_2)x-k=0$. The Krein bound $q^3_{33}\geq0$ gives $m\leq n^2$ if $r\ne2$. In the case $m=n^2$, following Godsil, we call $\Gamma$ an antipodal Krein graph. The point graph $\Sigma$ of $GQ(q,q^2)$ having spread gives an antipodal Krein graph with $r=q+1$. If $\Sigma$ has an automorphism $\sigma$ of order $f$ that fixes every component of the spread, then the graph $\overline\Sigma=\Sigma/\langle\sigma\rangle$ whose vertices are $\sigma$-orbits on a point set and two orbits are adjacent if a vertex of one orbit is adjacent to a vertex of the other is a distance-regular graph with intersection array $\{q^3,((q+1)/(f-1)(q^2-1)f,1;1,(q^2-1)f,q^3\}$ and every local subgraph $\Delta(u)$ is pseudogeometric for $pG_{f-1}(q-1,(q+1)(f-1))$. If $f=2$, then we have a pseudogeometric graph for $GQ(q-1,q+1)$. Hence, a locally pseudo $GQ(4,6)$ graph with intersection array $\{125,96,1;1,48,125\}$ and a locally pseudo $GQ(6,8)$ graph with intersection array $\{343,288,1;1,96,343\}$ exist.
Keywords: distance-regular graph, antipodal Krein graph.
Funding agency Grant number
Russian Foundation for Basic Research 20–51–53013
This work was supported by the Russian Foundation for Basic Research jointly with the GFEN of China, project no. 20-51-53013.
Received: 23.03.2020
Revised: 23.03.2020
Accepted: 26.03.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 218–220
DOI: https://doi.org/10.1134/S1064562420030138
Bibliographic databases:
Document Type: Article
UDC: 519.17
Language: Russian
Citation: A. A. Makhnev, “Antipodal Krein graphs and distance-regular graphs close to them”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 54–57; Dokl. Math., 101:3 (2020), 218–220
Citation in format AMSBIB
\Bibitem{Mak20}
\by A.~A.~Makhnev
\paper Antipodal Krein graphs and distance-regular graphs close to them
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 54--57
\mathnet{http://mi.mathnet.ru/danma72}
\crossref{https://doi.org/10.31857/S2686954320030133}
\zmath{https://zbmath.org/?q=an:1477.05064}
\elib{https://elibrary.ru/item.asp?id=42930003}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 218--220
\crossref{https://doi.org/10.1134/S1064562420030138}
Linking options:
  • https://www.mathnet.ru/eng/danma72
  • https://www.mathnet.ru/eng/danma/v492/p54
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:94
    Full-text PDF :36
    References:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024