Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 20–23
DOI: https://doi.org/10.31857/S2686954320030054
(Mi danma65)
 

MATHEMATICS

Methods for estimating the global maximum point and the integral of a continuous function on a compact set

B. S. Darkhovsky

Federal Research Center Computer Science and Control of the Russian Academy of Sciences, Moscow, Russian Federation
References:
Abstract: A new approach to the problems of estimating the global maximum point and the integral of a continuous function on a compact set is proposed. The approach combines a simple Monte Carlo method and the ideas of the Lebesgue theory of measure and integration. Quality estimates for the proposed methods are given.
Keywords: global optimization, multidimensional integration, Monte Carlo method.
Presented: A. N. Shiryaev
Received: 18.12.2019
Revised: 24.03.2020
Accepted: 24.03.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 189–191
DOI: https://doi.org/10.1134/S1064562420030059
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: Russian
Citation: B. S. Darkhovsky, “Methods for estimating the global maximum point and the integral of a continuous function on a compact set”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 20–23; Dokl. Math., 101:3 (2020), 189–191
Citation in format AMSBIB
\Bibitem{Dar20}
\by B.~S.~Darkhovsky
\paper Methods for estimating the global maximum point and the integral of a continuous function on a compact set
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 20--23
\mathnet{http://mi.mathnet.ru/danma65}
\crossref{https://doi.org/10.31857/S2686954320030054}
\zmath{https://zbmath.org/?q=an:1477.62401}
\elib{https://elibrary.ru/item.asp?id=42929983}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 189--191
\crossref{https://doi.org/10.1134/S1064562420030059}
Linking options:
  • https://www.mathnet.ru/eng/danma65
  • https://www.mathnet.ru/eng/danma/v492/p20
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024