Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 15–19
DOI: https://doi.org/10.31857/S2686954320020034
(Mi danma64)
 

This article is cited in 6 scientific papers (total in 6 papers)

MATHEMATICS

Bicompact finite-difference scheme for Maxwell’s equations in layered media

A. A. Belovab, Zh. O. Dombrovskayaa

a Lomonosov Moscow State University, Moscow, Russian Federation
b Peoples' Friendship University of Russia, Moscow, Russian Federation
Full-text PDF (225 kB) Citations (6)
References:
Abstract: In layered media, the solution of Maxwell’s equations suffers a strong or weak discontinuity at the layer boundaries. Finite-difference schemes providing convergence on strong discontinuities have been proposed for the first time. These are conservative bicompact two-point schemes with mesh nodes lying on the layer boundaries. A fundamentally new technique for taking into account the medium dispersion is proposed. All these features ensure the second order of accuracy of the schemes on discontinuous solutions. Numerical examples illustrating these results are given.
Keywords: Maxwell’s equations, bicompact schemes, layered media, conjugation conditions, material dispersion.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation ÌÊ-1780.2019.1
Russian Foundation for Basic Research 19–01–00593
This work was supported by MK-1780.2019.1 grants (development of the bicompact scheme), by the Russian Foundation for Basic Research (project no. 19-01-00593) (test computations), and by the RUDN 5-100 program (construction of the exact solutions to the test problems).
Presented: B. N. Chetverushkin
Received: 27.09.2019
Revised: 27.09.2019
Accepted: 24.01.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 185–188
DOI: https://doi.org/10.1134/S1064562420020039
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: A. A. Belov, Zh. O. Dombrovskaya, “Bicompact finite-difference scheme for Maxwell’s equations in layered media”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 15–19; Dokl. Math., 101:3 (2020), 185–188
Citation in format AMSBIB
\Bibitem{BelDom20}
\by A.~A.~Belov, Zh.~O.~Dombrovskaya
\paper Bicompact finite-difference scheme for Maxwell’s equations in layered media
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 15--19
\mathnet{http://mi.mathnet.ru/danma64}
\crossref{https://doi.org/10.31857/S2686954320020034}
\zmath{https://zbmath.org/?q=an:7424584}
\elib{https://elibrary.ru/item.asp?id=42929982}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 185--188
\crossref{https://doi.org/10.1134/S1064562420020039}
Linking options:
  • https://www.mathnet.ru/eng/danma64
  • https://www.mathnet.ru/eng/danma/v492/p15
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024