Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 492, Pages 5–10
DOI: https://doi.org/10.31857/S2686954320030030
(Mi danma62)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICS

On some properties of superreflexive Besov spaces

A. N. Agadzhanov

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russian Federation
Full-text PDF (203 kB) Citations (1)
References:
Abstract: This paper contains results concerning superreflective Besov spaces $B^s_{p,q}(\mathbb{R}^n)$. Namely, expressions for convexity moduli and smoothness moduli with respect to the “canonical” norms are derived, and properties related to the finite representability of Banach spaces and linear compact operators in $B^s_{p,q}(\mathbb{R}^n)$ are examined. Additionally, inequalities of the Prus–Smarzewski type for arbitrary equivalent norms and inequalities of the James–Gurariy type are presented. Based on the latter, two-sided estimates for the norms of elements in $B^s_{p,q}(\mathbb{R}^n)$ can be obtained in terms of the expansion coefficients of these elements in unconditional normalized Schauder bases.
Keywords: superreflexivity, finite representability, Besov spaces, convexity moduli, smoothness moduli.
Presented: S. N. Vassilyev
Received: 24.02.2020
Revised: 26.02.2020
Accepted: 19.03.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 3, Pages 177–181
DOI: https://doi.org/10.1134/S1064562420030035
Bibliographic databases:
Document Type: Article
UDC: 517.946.9
Language: Russian
Citation: A. N. Agadzhanov, “On some properties of superreflexive Besov spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 492 (2020), 5–10; Dokl. Math., 101:3 (2020), 177–181
Citation in format AMSBIB
\Bibitem{Aga20}
\by A.~N.~Agadzhanov
\paper On some properties of superreflexive Besov spaces
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 492
\pages 5--10
\mathnet{http://mi.mathnet.ru/danma62}
\crossref{https://doi.org/10.31857/S2686954320030030}
\zmath{https://zbmath.org/?q=an:7424582}
\elib{https://elibrary.ru/item.asp?id=42929976}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 3
\pages 177--181
\crossref{https://doi.org/10.1134/S1064562420030035}
Linking options:
  • https://www.mathnet.ru/eng/danma62
  • https://www.mathnet.ru/eng/danma/v492/p5
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:84
    Full-text PDF :27
    References:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024