Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 493, Pages 32–37
DOI: https://doi.org/10.31857/S2686954320040244
(Mi danma6)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials over number fields

V. P. Platonovab, V. S. Zhgoona, M. M. Petrunina

a Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, 117218 Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (165 kB) Citations (5)
References:
Abstract: We obtain a complete description of fields $\mathbb{K}$ that are quadratic extensions of $\mathbb{Q}$ and of cubic polynomials $f\in\mathbb{K}[x]$ for which a continued fraction expansion of $\sqrt{f}$ in the field of formal power series $\mathbb{K}((x))$ is periodic. We also prove a finiteness theorem for cubic polynomials $f\in\mathbb{K}[x]$ with a periodic expansion of $\sqrt{f}$ over cubic and quartic extensions of $\mathbb{Q}$.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 0065-2019-0011
This work was performed within state assignment to basic scientific research, project no. 0065-2019-0011.
Received: 17.06.2020
Revised: 18.06.2020
Accepted: 18.06.2020
English version:
Doklady Mathematics, 2020, Volume 102, Issue 1, Pages 288–292
DOI: https://doi.org/10.1134/S1064562420040249
Bibliographic databases:
Document Type: Article
UDC: 511.6
Language: Russian
Citation: V. P. Platonov, V. S. Zhgoon, M. M. Petrunin, “On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials over number fields”, Dokl. RAN. Math. Inf. Proc. Upr., 493 (2020), 32–37; Dokl. Math., 102:1 (2020), 288–292
Citation in format AMSBIB
\Bibitem{PlaZhgPet20}
\by V.~P.~Platonov, V.~S.~Zhgoon, M.~M.~Petrunin
\paper On the problem of periodicity of continued fraction expansions of $\sqrt{f}$ for cubic polynomials over number fields
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 493
\pages 32--37
\mathnet{http://mi.mathnet.ru/danma6}
\crossref{https://doi.org/10.31857/S2686954320040244}
\zmath{https://zbmath.org/?q=an:1474.11127}
\elib{https://elibrary.ru/item.asp?id=43795342}
\transl
\jour Dokl. Math.
\yr 2020
\vol 102
\issue 1
\pages 288--292
\crossref{https://doi.org/10.1134/S1064562420040249}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000579463600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092907246}
Linking options:
  • https://www.mathnet.ru/eng/danma6
  • https://www.mathnet.ru/eng/danma/v493/p32
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:101
    Full-text PDF :39
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024