Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 491, Pages 90–94
DOI: https://doi.org/10.31857/S2686954320020228
(Mi danma57)
 

This article is cited in 5 scientific papers (total in 5 papers)

MATHEMATICS

Jacobi stability of a many-body system with modified potential

T. V. Sal'nikovaab, E. I. Kugusheva, S. Ya. Stepanovb

a Lomonosov Moscow State University
b Federal Research Center Computer Science and Control of the Russian Academy of Sciences, Moscow, Russian Federation
Full-text PDF (432 kB) Citations (5)
References:
Abstract: The evolution of a system of mutually gravitating particles is considered taking into account the energy loss in collisions. Collisions can be described in various ways. One can use the theory of inelastic impact of solids with Newton's recovery coefficient for the relative velocity of bouncing particles. In numerical implementation, the main difficulty of this approach is to track and refine the huge number of time moments of particle collisions. Another approach is to supplement the gravitational potential with the potential of repulsive forces similar to the Lennard-Jones intermolecular forces. Numerical experiments show that, under the Jacobi stability condition, both models lead to a qualitatively identical evolution with the formation of stable configurations. For an infinite number of particles, the probability density function is determined by the system of Vlasov–Boltzmann–Poisson equations. Our proposed methodology corresponds to the use of the Vlasov kinetic equation with a potential of the Lennard–Jones type.
Keywords: $n$-body problem, Lennard–Jones type potential, Jacobi stability.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00887
This work was supported in part by the Russian Foundation for Basic Research, project no. 18-01-00887.
Presented: V. V. Kozlov
Received: 24.12.2019
Revised: 24.12.2019
Accepted: 03.02.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 2, Pages 154–157
DOI: https://doi.org/10.1134/S1064562420020222
Bibliographic databases:
Document Type: Article
UDC: 531.19
Language: Russian
Citation: T. V. Sal'nikova, E. I. Kugushev, S. Ya. Stepanov, “Jacobi stability of a many-body system with modified potential”, Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 90–94; Dokl. Math., 101:2 (2020), 154–157
Citation in format AMSBIB
\Bibitem{SalKugSte20}
\by T.~V.~Sal'nikova, E.~I.~Kugushev, S.~Ya.~Stepanov
\paper Jacobi stability of a many-body system with modified potential
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 491
\pages 90--94
\mathnet{http://mi.mathnet.ru/danma57}
\crossref{https://doi.org/10.31857/S2686954320020228}
\zmath{https://zbmath.org/?q=an:7424577}
\elib{https://elibrary.ru/item.asp?id=42860672}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 2
\pages 154--157
\crossref{https://doi.org/10.1134/S1064562420020222}
Linking options:
  • https://www.mathnet.ru/eng/danma57
  • https://www.mathnet.ru/eng/danma/v491/p90
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024