Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 491, Pages 82–85
DOI: https://doi.org/10.31857/S2686954320020204
(Mi danma55)
 

MATHEMATICS

Parabolic equations with changing direction of time

S. V. Popovab

a Academy of Science of the Republic of Sakha (Yakutia), Yakutsk, Russian Federation
b North-Eastern Federal University named after M. K. Ammosov, Yakutsk, Russian Federation
References:
Abstract: A theorem about the behavior of Cauchy-type integrals at the endpoints of the integration contour and at discontinuity points of the density is stated, and its application to boundary value problems for $2n$-order parabolic equations with a changing direction of time are described. The theory of singular equations, along with the smoothness of the initial data, makes it possible to specify necessary and sufficient conditions for the solution to belong to Hölder spaces. Note that, in the case $n=3$, the smoothness of the initial data and the solvability conditions imply that the solution belongs to smoother spaces near the ends with respect to the time variable.
Keywords: Cauchy-type integral, parabolic equations with changing direction of time, bonding gluing condition, Hölder space, singular integral equation.
Presented: E. I. Moiseev
Received: 19.02.2019
Revised: 25.02.2020
Accepted: 25.02.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 2, Pages 147–149
DOI: https://doi.org/10.1134/S1064562420020209
Bibliographic databases:
Document Type: Article
UDC: 517.956.4
Language: Russian
Citation: S. V. Popov, “Parabolic equations with changing direction of time”, Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 82–85; Dokl. Math., 101:2 (2020), 147–149
Citation in format AMSBIB
\Bibitem{Pop20}
\by S.~V.~Popov
\paper Parabolic equations with changing direction of time
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 491
\pages 82--85
\mathnet{http://mi.mathnet.ru/danma55}
\crossref{https://doi.org/10.31857/S2686954320020204}
\zmath{https://zbmath.org/?q=an:1477.35307}
\elib{https://elibrary.ru/item.asp?id=42860670}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 2
\pages 147--149
\crossref{https://doi.org/10.1134/S1064562420020209}
Linking options:
  • https://www.mathnet.ru/eng/danma55
  • https://www.mathnet.ru/eng/danma/v491/p82
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024