Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 491, Pages 65–67
DOI: https://doi.org/10.31857/S2686954320020149
(Mi danma52)
 

MATHEMATICS

Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators

L. V. Kritskov

Lomonosov Moscow State University, Moscow, Russian Federation
References:
Abstract: Result on the uniform, over the entire real line, equiconvergence of spectral expansions related to the self-adjoint extension of a general differential operation of any even order with coefficients from the one-dimensional Kato class, with the Fourier integral expansion is presented. The statement is based on the obtained uniform estimates for the spectral function of this operator.
Keywords: self-adjoint even-order differential operator, spectral expansion, equiconvergence.
Presented: E. I. Moiseev
Received: 19.12.2019
Revised: 19.12.2019
Accepted: 26.02.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 2, Pages 132–134
DOI: https://doi.org/10.1134/S1064562420020143
Bibliographic databases:
Document Type: Article
UDC: 517.927.25
Language: Russian
Citation: L. V. Kritskov, “Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators”, Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 65–67; Dokl. Math., 101:2 (2020), 132–134
Citation in format AMSBIB
\Bibitem{Kri20}
\by L.~V.~Kritskov
\paper Uniform, on the real line, equiconvergence of spectral expansions for the higher-order differential operators
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 491
\pages 65--67
\mathnet{http://mi.mathnet.ru/danma52}
\crossref{https://doi.org/10.31857/S2686954320020149}
\zmath{https://zbmath.org/?q=an:7424571}
\elib{https://elibrary.ru/item.asp?id=42860665}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 2
\pages 132--134
\crossref{https://doi.org/10.1134/S1064562420020143}
Linking options:
  • https://www.mathnet.ru/eng/danma52
  • https://www.mathnet.ru/eng/danma/v491/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:83
    Full-text PDF :38
    References:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024