Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2020, Volume 491, Pages 68–72
DOI: https://doi.org/10.31857/S2686954320020150
(Mi danma5)
 

This article is cited in 2 scientific papers (total in 3 papers)

MATHEMATICS

Minimal self-similar Peano curve of genus 5$\times$5

Yu. V. Malykhin, E. V. Shchepin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Full-text PDF (166 kB) Citations (3)
References:
Abstract: The paper presents a plane regular fractal Peano curve with a Euclidean square-to-line ratio ($L_2$-locality) of 5$\frac{43}{73}$, which is minimal among all known curves of this class. The presented curve has a fractal genus of 25. Performed calculations allow us to state that all the other regular curves with a fractal genus not exceeding 36 have a strictly greater square-to-line ratio.
Keywords: space-filling curves, Peano curves, square-to-line ratio, regular fractal curves.
Funding agency Grant number
Russian Academy of Sciences - Federal Agency for Scientific Organizations 26
The authors were partially supported by the RAS program 26 "Fundamentals of Creating Algorithms and Software for Advanced High-Performance Computing" (project "Multidimensional fractal Peano curves").
Received: 22.01.2020
Revised: 22.01.2020
Accepted: 29.01.2020
English version:
Doklady Mathematics, 2020, Volume 101, Issue 2, Pages 135–138
DOI: https://doi.org/10.1134/S1064562420020155
Bibliographic databases:
Document Type: Article
UDC: 519.6
Language: Russian
Citation: Yu. V. Malykhin, E. V. Shchepin, “Minimal self-similar Peano curve of genus 5$\times$5”, Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 68–72; Dokl. Math., 101:2 (2020), 135–138
Citation in format AMSBIB
\Bibitem{MalShc20}
\by Yu.~V.~Malykhin, E.~V.~Shchepin
\paper Minimal self-similar Peano curve of genus 5$\times$5
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2020
\vol 491
\pages 68--72
\mathnet{http://mi.mathnet.ru/danma5}
\crossref{https://doi.org/10.31857/S2686954320020150}
\zmath{https://zbmath.org/?q=an:7424572}
\elib{https://elibrary.ru/item.asp?id=42860666}
\transl
\jour Dokl. Math.
\yr 2020
\vol 101
\issue 2
\pages 135--138
\crossref{https://doi.org/10.1134/S1064562420020155}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000549718900014}
Linking options:
  • https://www.mathnet.ru/eng/danma5
  • https://www.mathnet.ru/eng/danma/v491/p68
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024