|
MATHEMATICS
A note on Borsuk’s problem in Minkowski spaces
A. M. Raigorodskiiabcd, A. A. Sagdeevae a Moscow Institute of Physics and Technology, Moscow, Russia
b Lomonosov Moscow State University
c Caucasus Mathematical Center, Adyghe State University, Maikop
d Buryat State University, Ulan-Ude, Russia
e Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, Budapest
Abstract:
In 1993, Kahn and Kalai famously constructed a sequence of finite sets in $d$-dimensional Euclidean spaces that cannot be partitioned into less than (1.203 $\dots$ + $o$(1))${}^{\sqrt{d}}$ parts of smaller diameter. Their method works not only for the Euclidean, but for all $l_p$-spaces as well. In this short note, we observe that the larger the value of $p$, the stronger this construction becomes.
Keywords:
Borsuk problem, Minkowski space, $l_p$-norm.
Citation:
A. M. Raigorodskii, A. A. Sagdeev, “A note on Borsuk’s problem in Minkowski spaces”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 100–104; Dokl. Math., 109:1 (2024), 80–83
Linking options:
https://www.mathnet.ru/eng/danma499 https://www.mathnet.ru/eng/danma/v515/p100
|
|