Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 515, Pages 79–83
DOI: https://doi.org/10.31857/S2686954324010124
(Mi danma496)
 

MATHEMATICS

Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure

A. A. Kovalevskyab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University, Yekaterinburg, Russian Federation
Abstract: We consider variational inequalities with invertible operators $\mathcal A_s\colon W^{1,p}_0(\Omega)\to W^{-1,p'}(\Omega)$, $s\in\mathbb N$, in divergence form and with constraint set $V=\{v\in W^{1,p}_0(\Omega):\varphi\leq v\leq \psi\}$ a.e. in $\Omega\}$, where $\Omega$ is a nonempty bounded open set in $\mathbb R^n$ ($n\geq2$), $p>1$, and $\varphi,\psi\colon\Omega\to\bar{\mathbb R}$ are measurable functions. Under the assumptions that the operators $\mathcal A_s$ $G$-converge to an invertible operator $\mathcal A\colon W^{1,p}_0(\Omega)\to W^{-1,p'}(\Omega)$, $\operatorname{int}\{\varphi=\psi\}\neq\varnothing$, $\operatorname{meas}(\partial\{\varphi=\psi\}\cap\Omega)=0$, and there exist functions $\varphi,\overline{\psi}\in W^{1,p}_0(\Omega)$ such that $\varphi\leq\overline{\varphi}\leq\psi$ a.e. in $\Omega$ and $\operatorname{meas}(\{\varphi\neq\psi\}\setminus\{\overline{\varphi}\neq\overline{\psi}\})=0$, we establish that the solutions $u_s$, of the variational inequalities converge weakly in $W^{1,p}_0(\Omega)$ to the solution $u$ of a similar variational inequality with the operator $\mathcal A$ and the constraint set $V$. The fundamental difference of the considered case from the previously studied one in which $\operatorname{meas}\{\varphi=\psi\}=0$ is that, in general, the functionals $\mathcal A_su_s$ do not converge to $\mathcal Au$ even weakly in $W^{-1,p'}(\Omega)$ and the energy integrals $\langle\mathcal A_su_s,u_s\rangle$ do not converge to $\langle\mathcal Au,u\rangle$.
Keywords: variational inequality, bilateral constraints, $G$-convergence of operators, convergence of solutions.
Funding agency Grant number
Priority 2030 Program
This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the framework of the Program of development of Ural Federal University under the “Priority-2030” academic leadership program.
Presented: V. I. Berdyshev
Received: 22.06.2023
Revised: 21.01.2024
Accepted: 29.01.2024
English version:
Doklady Mathematics, 2024, Volume 109, Issue 1, Pages 62–65
DOI: https://doi.org/10.1134/S1064562424701813
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: Russian
Citation: A. A. Kovalevsky, “Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 79–83; Dokl. Math., 109:1 (2024), 62–65
Citation in format AMSBIB
\Bibitem{Kov24}
\by A.~A.~Kovalevsky
\paper Nonlinear variational inequalities with bilateral constraints coinciding on a set of positive measure
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 515
\pages 79--83
\mathnet{http://mi.mathnet.ru/danma496}
\crossref{https://doi.org/10.31857/S2686954324010124}
\elib{https://elibrary.ru/item.asp?id=67973253}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 1
\pages 62--65
\crossref{https://doi.org/10.1134/S1064562424701813}
Linking options:
  • https://www.mathnet.ru/eng/danma496
  • https://www.mathnet.ru/eng/danma/v515/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024