Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 515, Pages 71–78
DOI: https://doi.org/10.31857/S2686954324010113
(Mi danma495)
 

MATHEMATICS

Finding the area and perimeter distributions for flat Ðoisson processes of a straight line and Voronoi diagrams

A. Ya. Kanel-Belovabc, M. Golafshanb, S. G. Malevd, R. P. Yavichd

a Bar-Ilan University, Ramat Gan, Israel
b Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
c Magnitogorsk State Technical University, Magnitogorsk, Russia
d Ariel University, Ariel, Israel
Abstract: The study of distribution functions (with respect to areas, perimeters) for partitioning a plane (space) by a random field of straight lines (hyperplanes) and for obtaining Voronoi diagrams is a classical problem in statistical geometry. Moments for such distributions have been investigated since 1972 [1]. We give a complete solution of these problems for the plane, as well as for Voronoi diagrams. The following problems are solved:
1. A random set of straight lines is given on the plane, all shifts are equiprobable, and the distribution law has the form $F(\varphi)$. What is the area (perimeter) distribution of the parts of the partition?
2. A random set of points is marked on the plane. Each point A is associated with a “region of attraction”, which is a set of points on the plane to which A is the closest of the marked set.
The idea is to interpret a random polygon as the evolution of a segment on a moving one and construct kinetic equations. It is sufficient to take into account a limited number of parameters: the covered area (perimeter), the length of the segment, and the angles at its ends. We show how to reduce these equations to the Riccati equation using the Laplace transform.
Keywords: geometric probabilities, Poisson line process, Voronoi diagram, kinetic equation, Markov equation, random sets, statistical geometry, distributions of random variables.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2021-1393
Russian Science Foundation 22-1920073
This work was supported by the Russian Science Foundation, grant no. 22-19-20073.
Presented: A. L. Semenov
Received: 16.01.2023
Revised: 13.11.2023
Accepted: 19.12.2023
English version:
Doklady Mathematics, 2024, Volume 109, Issue 1, Pages 56–61
DOI: https://doi.org/10.1134/S1064562424701801
Bibliographic databases:
Document Type: Article
UDC: 519.21+517.9
Language: Russian
Citation: A. Ya. Kanel-Belov, M. Golafshan, S. G. Malev, R. P. Yavich, “Finding the area and perimeter distributions for flat Ðoisson processes of a straight line and Voronoi diagrams”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 71–78; Dokl. Math., 109:1 (2024), 56–61
Citation in format AMSBIB
\Bibitem{BelGolMal24}
\by A.~Ya.~Kanel-Belov, M.~Golafshan, S.~G.~Malev, R.~P.~Yavich
\paper Finding the area and perimeter distributions for flat Ðoisson processes of a straight line and Voronoi diagrams
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 515
\pages 71--78
\mathnet{http://mi.mathnet.ru/danma495}
\crossref{https://doi.org/10.31857/S2686954324010113}
\elib{https://elibrary.ru/item.asp?id=67973252}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 1
\pages 56--61
\crossref{https://doi.org/10.1134/S1064562424701801}
Linking options:
  • https://www.mathnet.ru/eng/danma495
  • https://www.mathnet.ru/eng/danma/v515/p71
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024