Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 515, Pages 66–70
DOI: https://doi.org/10.31857/S2686954324010107
(Mi danma494)
 

MATHEMATICS

On the orbital stability of pendulum motions of a rigid body in the Hess case

B. S. Bardin, A. A. Savin

Moscow Aviation Institute (National Research University), Moscow, Russia
Abstract: Given a heavy rigid body with one fixed point, we investigate the problem of orbital stability of its periodic motions. Based on the analysis of the linearized system of equations of perturbed motion, the orbital instability of the pendulum rotations is proved. In the case of pendulum oscillations, a transcendental situation occurs, when the question of stability cannot be solved using terms of an arbitrarily high order in the expansion of the Hamiltonian of the equations of perturbed motion. It is proved that the pendulum oscillations are orbitally unstable for most values of the parameters.
Keywords: heavy rigid body, identity resonance, Hess case, orbital stability.
Funding agency Grant number
Russian Science Foundation 22-21-00729
This work was carried out in Moscow Aviation Institute (National Research University) and was supported by the Russian Science Foundation, project no. 22-21-00729.
Presented: V. V. Kozlov
Received: 28.11.2023
Revised: 06.12.2023
Accepted: 12.12.2023
English version:
Doklady Mathematics, 2024, Volume 109, Issue 1, Pages 52–55
DOI: https://doi.org/10.1134/S1064562424701795
Bibliographic databases:
Document Type: Article
UDC: 531.381
Language: Russian
Citation: B. S. Bardin, A. A. Savin, “On the orbital stability of pendulum motions of a rigid body in the Hess case”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 66–70; Dokl. Math., 109:1 (2024), 52–55
Citation in format AMSBIB
\Bibitem{BarSav24}
\by B.~S.~Bardin, A.~A.~Savin
\paper On the orbital stability of pendulum motions of a rigid body in the Hess case
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 515
\pages 66--70
\mathnet{http://mi.mathnet.ru/danma494}
\crossref{https://doi.org/10.31857/S2686954324010107}
\elib{https://elibrary.ru/item.asp?id=67973251}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 1
\pages 52--55
\crossref{https://doi.org/10.1134/S1064562424701795}
Linking options:
  • https://www.mathnet.ru/eng/danma494
  • https://www.mathnet.ru/eng/danma/v515/p66
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024