Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 515, Pages 60–65
DOI: https://doi.org/10.31857/S2686954324010093
(Mi danma493)
 

MATHEMATICS

On derivation of Vlasov–Maxwell–Einstein equations from the principle of least action, the Hamilton–Jacobi method, and the Milne–Mccrea model

V. V. Vedenyapin

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow
Abstract: In classical texts equations for gravitation and electromagnetic fields are proposed without deriving their right-hand sides [1–4]. In this paper, we derive the right-hand sides and analyze the energy–momentum tensor in the framework of Vlasov–Maxwell–Einstein equations and Milne–McCrea models. New models of accelerated expansion of the Universe without Einstein's lambda are proposed.
Keywords: Vlasov equation, Vlasov–Einstein equation, Vlasov–Maxwell equation, Vlasov–Poisson equation.
Presented: V. V. Kozlov
Received: 11.11.2023
Accepted: 12.12.2023
English version:
Doklady Mathematics, 2024, Volume 109, Issue 1, Pages 47–51
DOI: https://doi.org/10.1134/S1064562424701692
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: V. V. Vedenyapin, “On derivation of Vlasov–Maxwell–Einstein equations from the principle of least action, the Hamilton–Jacobi method, and the Milne–Mccrea model”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 60–65; Dokl. Math., 109:1 (2024), 47–51
Citation in format AMSBIB
\Bibitem{Ved24}
\by V.~V.~Vedenyapin
\paper On derivation of Vlasov--Maxwell--Einstein equations from the principle of least action, the Hamilton--Jacobi method, and the Milne--Mccrea model
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 515
\pages 60--65
\mathnet{http://mi.mathnet.ru/danma493}
\crossref{https://doi.org/10.31857/S2686954324010093}
\elib{https://elibrary.ru/item.asp?id=67973250}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 1
\pages 47--51
\crossref{https://doi.org/10.1134/S1064562424701692}
Linking options:
  • https://www.mathnet.ru/eng/danma493
  • https://www.mathnet.ru/eng/danma/v515/p60
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024