|
MATHEMATICS
On a paradoxical property of the shift mapping on an infinite-dimensional tori
S. D. Glyzin, A. Yu. Kolesov Center of Integrable Systems, Demidov Yaroslavl State University, Yaroslavl, Russia
Abstract:
An infinite-dimensional torus $\mathbb{T}^\infty=l_p /2\pi\mathbb{Z}^\infty$, where $l_p$, $p\ge1$, is a space of sequences and $\mathbb{Z}^\infty$ is a natural integer lattice in $l_p$ is considered. We study a classical question in the theory of dynamical systems concerning the behavior of trajectories of a shift mapping on $\mathbb{T}^\infty$. More precisely, sufficient conditions are proposed under which the $\omega$-limit and $\alpha$-limit sets of any trajectory of the shift mapping on $\mathbb{T}^\infty$ are empty.
Keywords:
integer lattice, infinite-dimensional torus, shift mapping, turbulent behavior of trajectories.
Citation:
S. D. Glyzin, A. Yu. Kolesov, “On a paradoxical property of the shift mapping on an infinite-dimensional tori”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 28–33; Dokl. Math., 109:1 (2024), 20–24
Linking options:
https://www.mathnet.ru/eng/danma488 https://www.mathnet.ru/eng/danma/v515/p28
|
|