Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2024, Volume 515, Pages 18–27
DOI: https://doi.org/10.31857/S2686954324010037
(Mi danma487)
 

MATHEMATICS

Aperiodical isoperimetric planar homogenization with critical diameter: universal non-local strange term for a dynamical unilateral boundary condition

J. I. Diaza, T. A. Shaposhnikovab, A. V. Podolskiib

a Instituto Pluridisciplinar, Universidad Complutense, Madrid
b Lomonosov Moscow State University, Moscow, Russian Federation
Abstract: We study the asymptotic behavior of the solution to the diffusion equation in a planar domain, perforated by tiny sets of different shapes with a constant perimeter and a uniformly bounded diameter, when the diameter of a basic cell $\varepsilon$ goes to 0. This makes the structure of the heterogeneous domain aperiodical. On the boundary of the removed sets (or the exterior to a set of particles, as it arises in chemical engineering), we consider the dynamic unilateral Signorini boundary condition containing a large-growth parameter $\beta(\varepsilon)$. We derive and justify the homogenized model when the problem's parameters take the “critical values”. In that case, the homogenized is universal (in the sense that it does not depend on the shape of the perforations or particles) and contains a “strange term” given by a non-linear, non-local in time, monotone operator $\mathbf{H}$ that is defined as the solution to an obstacle problem for an ODE operator. The solution of the limit problem can take negative values even if, for any $\varepsilon$, in the original problem, the solution is non-negative on the boundary of the perforations or particles.
Keywords: homogenization of parabolic equation, perforated domain, critical case, strange nonlocal term.
Funding agency Grant number
Spanish State Research Agency PID2020-112517GB-I00
The research of Diaz was partially supported by the project PID2020-112517GB-I00 of the Spanish State Research Agency (AEI).
Presented: V. V. Kozlov
Received: 07.11.2023
Revised: 22.12.2023
Accepted: 20.01.2024
English version:
Doklady Mathematics, 2024, Volume 109, Issue 1, Pages 12–19
DOI: https://doi.org/10.1134/S1064562424701734
Bibliographic databases:
Document Type: Article
UDC: 517.956.225
Language: Russian
Citation: J. I. Diaz, T. A. Shaposhnikova, A. V. Podolskii, “Aperiodical isoperimetric planar homogenization with critical diameter: universal non-local strange term for a dynamical unilateral boundary condition”, Dokl. RAN. Math. Inf. Proc. Upr., 515 (2024), 18–27; Dokl. Math., 109:1 (2024), 12–19
Citation in format AMSBIB
\Bibitem{DiaShaPod24}
\by J.~I.~Diaz, T.~A.~Shaposhnikova, A.~V.~Podolskii
\paper Aperiodical isoperimetric planar homogenization with critical diameter: universal non-local strange term for a dynamical unilateral boundary condition
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2024
\vol 515
\pages 18--27
\mathnet{http://mi.mathnet.ru/danma487}
\crossref{https://doi.org/10.31857/S2686954324010037}
\elib{https://elibrary.ru/item.asp?id=67973244}
\transl
\jour Dokl. Math.
\yr 2024
\vol 109
\issue 1
\pages 12--19
\crossref{https://doi.org/10.1134/S1064562424701734}
Linking options:
  • https://www.mathnet.ru/eng/danma487
  • https://www.mathnet.ru/eng/danma/v515/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025