Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 417–430
DOI: https://doi.org/10.31857/S2686954323601525
(Mi danma484)
 

This article is cited in 1 scientific paper (total in 1 paper)

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

ESGify: Automated classification of environmental, social and corporate governance risks

A. Kazakova, S. Denisovaa, I. Barsolaa, E. Kaluginaa, I. Molchanovaa, I. Egorova, A. Kosterinaa, E. Tereshchenkoa, L. Shutikhinaa, I. Doroshchenkoa, N. Sotiriadia, S. Budennyyab

a Sber AI Lab, Moscow, Russian Federation
b Artificial Intelligence Research Institute, Moscow, Russian Federation
Citations (1)
References:
Abstract: The growing recognition of environmental, social, and governance (ESG) factors in financial decisionmaking has spurred the need for effective and comprehensive ESG risk assessment tools. In this study, we introduce an open-source Natural Language Processing (NLP) model, “ESGify”12, based on MPNet-base architecture and aimed to classify texts within the frames of ESG risks. We also present a hierarchical and detailed methodology for ESG risk classification, leveraging the expertise of ESG professionals and global best practices. Anchored by a manually annotated multilabel dataset of 2,000 news articles and dosmain adaptation with texts of sustainability reports, ESGify is developed to automate ESG risk classification following the established methodology. We compare augmentation techniques based on back translation and Large Language Models (LLMs) to improve the model quality and achieve 0.5 F1-weighted model quality in the dataset with 47 classes. This result outperforms ChatGPT 3.5 with a simple prompt. The model weights and documentation is hosted on Github https://github.com/sb-ai-lab/ESGify under the Apache 2.0 license.
Presented: A. A. Shananin
Received: 24.08.2023
Revised: 15.09.2023
Accepted: 24.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S529–S540
DOI: https://doi.org/10.1134/S1064562423701673
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Kazakov, S. Denisova, I. Barsola, E. Kalugina, I. Molchanova, I. Egorov, A. Kosterina, E. Tereshchenko, L. Shutikhina, I. Doroshchenko, N. Sotiriadi, S. Budennyy, “ESGify: Automated classification of environmental, social and corporate governance risks”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 417–430; Dokl. Math., 108:suppl. 2 (2023), S529–S540
Citation in format AMSBIB
\Bibitem{KazDenBar23}
\by A.~Kazakov, S.~Denisova, I.~Barsola, E.~Kalugina, I.~Molchanova, I.~Egorov, A.~Kosterina, E.~Tereshchenko, L.~Shutikhina, I.~Doroshchenko, N.~Sotiriadi, S.~Budennyy
\paper ESGify: Automated classification of environmental, social and corporate governance risks
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 417--430
\mathnet{http://mi.mathnet.ru/danma484}
\crossref{https://doi.org/10.31857/S2686954323601525}
\elib{https://elibrary.ru/item.asp?id=56717877}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S529--S540
\crossref{https://doi.org/10.1134/S1064562423701673}
Linking options:
  • https://www.mathnet.ru/eng/danma484
  • https://www.mathnet.ru/eng/danma/v514/i2/p417
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024