Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 385–394
DOI: https://doi.org/10.31857/S2686954323601926
(Mi danma482)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Do we benefit from the categorization of the news flow in the stock price prediction problem?

T. D. Kulikovaa, E. Yu. Kovtunb, S. A. Budennyyc

a Faculty of Computer Science, National Research University "Higher School of Economics", Moscow, Russian Federation
b Sber AI Lab, Moscow, Russian Federation
c Artificial Intelligence Research Institute, Moscow, Russian Federation
References:
Abstract: The power of machine learning is widely leveraged in the task of company stock price prediction. It is essential to incorporate historical stock prices and relevant external world information for constructing a more accurate predictive model. The sentiments of the financial news connected with the company can become such valuable knowledge. However, financial news has different topics, such as Macro, Markets, or Product news. The adoption of such categorization is usually out of scope in a market research. In this work, we aim to close this gap and explore the effect of capturing the news topic differentiation in the stock price prediction problem. Initially, we classify the financial news stream into 20 pre-defined topics with the pre-trained model. Then, we get sentiments and explore the topic of news group sentiment labeling. Moreover, we conduct the experiments with the several well-proved models for time series forecasting, including the Temporal Convolutional Network (TCN), the D-Linear, the Transformer, and the Temporal Fusion Transformer (TFT). In the results of our research, utilizing the information from separate topic groups contributes to a better performance of deep learning models compared to the approach when we consider all news sentiments without any division.
Keywords: financial news, stock market, BERT, topic classification, sentiment analysis, time-series forecasting, deep learning, external data.
Presented: A. A. Shananin
Received: 04.09.2023
Revised: 08.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S503–S510
DOI: https://doi.org/10.1134/S1064562423701648
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: T. D. Kulikova, E. Yu. Kovtun, S. A. Budennyy, “Do we benefit from the categorization of the news flow in the stock price prediction problem?”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 385–394; Dokl. Math., 108:suppl. 2 (2023), S503–S510
Citation in format AMSBIB
\Bibitem{KulKovBud23}
\by T.~D.~Kulikova, E.~Yu.~Kovtun, S.~A.~Budennyy
\paper Do we benefit from the categorization of the news flow in the stock price prediction problem?
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 385--394
\mathnet{http://mi.mathnet.ru/danma482}
\crossref{https://doi.org/10.31857/S2686954323601926}
\elib{https://elibrary.ru/item.asp?id=56717867}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S503--S510
\crossref{https://doi.org/10.1134/S1064562423701648}
Linking options:
  • https://www.mathnet.ru/eng/danma482
  • https://www.mathnet.ru/eng/danma/v514/i2/p385
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024