Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 375–384
DOI: https://doi.org/10.31857/S2686954323601860
(Mi danma481)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Safe pre-training of deep language models in a synthetic pseudo-language

T. E. Gorbacheva, I. Yu. Bondarenko

Novosibirsk State University, Novosibirsk, Russian Federation
References:
Abstract: This paper compares the pre-training of a transformer on natural language texts and on sentences of a synthetic pseudolanguage. The artificial texts were automatically generated according to the rules we wrote in a context-free grammar. The results of fine-tuning to complete tasks of the RussianSuperGLUE project statistically reliably showed that the models had the same scores. That is, we can consider that the use of artificial texts provides an advantage in the AI safety due to the ability to completely control the composition of the dataset. We can also say that at the pre-training stage of a model like RoBERTa, it is enough to learn to recognize only the syntactic and morphological patterns of the language, which can be successfully created in a fairly simple way, such as a context-free grammar.
Keywords: deep learning methods, transformers, pre-training, automatic text generation, language models, synthetic data, AI safety.
Presented: A. L. Semenov
Received: 03.09.2023
Revised: 15.09.2023
Accepted: 24.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S494–S502
DOI: https://doi.org/10.1134/S1064562423701636
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: T. E. Gorbacheva, I. Yu. Bondarenko, “Safe pre-training of deep language models in a synthetic pseudo-language”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 375–384; Dokl. Math., 108:suppl. 2 (2023), S494–S502
Citation in format AMSBIB
\Bibitem{GorBon23}
\by T.~E.~Gorbacheva, I.~Yu.~Bondarenko
\paper Safe pre-training of deep language models in a synthetic pseudo-language
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 375--384
\mathnet{http://mi.mathnet.ru/danma481}
\crossref{https://doi.org/10.31857/S2686954323601860}
\elib{https://elibrary.ru/item.asp?id=56717861}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S494--S502
\crossref{https://doi.org/10.1134/S1064562423701636}
Linking options:
  • https://www.mathnet.ru/eng/danma481
  • https://www.mathnet.ru/eng/danma/v514/i2/p375
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024