Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 364–374
DOI: https://doi.org/10.31857/S2686954323601689
(Mi danma480)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Investigation of neural network algorithms for Human movement prediction based on LSTM and transformers

S. V. Zhiganov, Yu. S. Ivanov, D. M. Grabar'

Komsomolsk-na-Amure State University, Komsomolsk-on-Amur, Russian Federation
References:
Abstract: Experiments on Human3.6M and on our own real data confirmed the effectiveness of the proposed approach based on FNet blocks, compared to the traditional approach based on LSTM. The proposed algorithm matches the accuracy of advanced models, but outperforms them in terms of speed and uses less computational resources and can be applied in collaborative robotic solutions. The problem of predicting the position of a person on future frames of a video stream is solved and in-depth experimental studies on the application of traditional and SOTA blocks for this task are carried out. An original architecture of KeyFNet and its modifications based on transform blocks is presented, which is able to predict coordinates in the video stream for 30, 60, 90 and 120 frames ahead with high accuracy. The novelty lies in the application of a combined algorithm based on multiple FNet blocks with fast Fourier transform as an attention mechanism concatenating the coordinates of key points.
Keywords: prediction key points, transformers, collaborative robotic systems, deep learning.
Funding agency Grant number
Russian Science Foundation 22-71-10093
This work was supported by the Russian Science Foundation, project no. 22-71-10093, https://rscf.ru/en/project/22-71-10093/).
Presented: A. I. Avetisyan
Received: 02.09.2023
Revised: 15.09.2023
Accepted: 24.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S484–S493
DOI: https://doi.org/10.1134/S1064562423701624
Bibliographic databases:
Document Type: Article
UDC: 004.93
Language: Russian
Citation: S. V. Zhiganov, Yu. S. Ivanov, D. M. Grabar', “Investigation of neural network algorithms for Human movement prediction based on LSTM and transformers”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 364–374; Dokl. Math., 108:suppl. 2 (2023), S484–S493
Citation in format AMSBIB
\Bibitem{ZhiIvaGra23}
\by S.~V.~Zhiganov, Yu.~S.~Ivanov, D.~M.~Grabar'
\paper Investigation of neural network algorithms for Human movement prediction based on LSTM and transformers
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 364--374
\mathnet{http://mi.mathnet.ru/danma480}
\crossref{https://doi.org/10.31857/S2686954323601689}
\elib{https://elibrary.ru/item.asp?id=56717859}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S484--S493
\crossref{https://doi.org/10.1134/S1064562423701624}
Linking options:
  • https://www.mathnet.ru/eng/danma480
  • https://www.mathnet.ru/eng/danma/v514/i2/p364
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024