|
MATHEMATICS
Generalized primitive potentials
V. E. Zakharovab, D. V. Zakharovc a Skolkovo Institute of Science and Technology, Moscow, Russian Federation
b University of Arizona, Tucson, AZ, USA
c Central Michigan University, Mount Pleasant, MI, USA
Abstract:
Recently, we introduced a new class of bounded potentials of the one-dimensional stationary Schrödinger operator on the real axis, and a corresponding family of solutions of the KdV hierarchy. These potentials, which we call primitive, are obtained as limits of rapidly decreasing reflectionless potentials, or multisoliton solutions of KdV. In this note, we introduce generalized primitive potentials, which are obtained as limits of all rapidly decreasing potentials of the Schrödinger operator. These potentials are constructed by solving a contour problem, and are determined by a pair of positive functions on a finite interval and a functional parameter on the real axis.
Keywords:
integrable systems, Schrödinger equation, primitive potentials.
Received: 14.02.2020 Revised: 14.02.2020 Accepted: 13.03.2020
Citation:
V. E. Zakharov, D. V. Zakharov, “Generalized primitive potentials”, Dokl. RAN. Math. Inf. Proc. Upr., 491 (2020), 47–52; Dokl. Math., 101:2 (2020), 117–121
Linking options:
https://www.mathnet.ru/eng/danma48 https://www.mathnet.ru/eng/danma/v491/p47
|
Statistics & downloads: |
Abstract page: | 135 | Full-text PDF : | 49 | References: | 22 |
|