Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 355–363
DOI: https://doi.org/10.31857/S2686954323601033
(Mi danma479)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Machine learning as a tool to accelerate the search for new materials for metal-ion batteries

V. T. Osipova, M. I. Gongolabc, E. A. Morkhovaa, A. P. Nemudryib, A. A. Kabanovab

a Samara State Technical University, Samara, Russia
b Institute of Solid State Chemistry and Mechanochemistry of the Siberian Branch of the RAS, Novosibirsk, Russia
c Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: The search for new solid ionic conductors is an important topic of material science that requires significant resources, but can be accelerated using machine learning (ML) techniques. In this work, ML methods were applied to predict the migration energy of working ions. The training set is based on data on 225 lithium ion migration channels in 23 ion conductors. The descriptors were the parameters of free space in the crystal obtained by the Voronoi partitioning method. The accuracy of migration energy prediction was evaluated by comparison with the data obtained by the density functional theory method. Two methods of ML were applied in the work: support vector regression and ordinal regression. It is shown that the parameters of free space in a crystal correlate with the migration energy, while the best results are obtained by ordinal regression. The developed ML models can be used as an additional filter in the analysis of ionic conductivity in solids.
Keywords: ionic conductors, voronoi partitioning, topospro, machine learning, migration energy, DFT calculations.
Funding agency Grant number
Russian Science Foundation 19-73-10026
The research was supported by the Russian Science Foundation, project no. 19-73-10026.
Presented: A. I. Avetisyan
Received: 04.08.2023
Revised: 11.08.2023
Accepted: 24.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S476–S483
DOI: https://doi.org/10.1134/S1064562423701612
Bibliographic databases:
Document Type: Article
UDC: 546
Language: Russian
Citation: V. T. Osipov, M. I. Gongola, E. A. Morkhova, A. P. Nemudryi, A. A. Kabanov, “Machine learning as a tool to accelerate the search for new materials for metal-ion batteries”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 355–363; Dokl. Math., 108:suppl. 2 (2023), S476–S483
Citation in format AMSBIB
\Bibitem{OsiGonMor23}
\by V.~T.~Osipov, M.~I.~Gongola, E.~A.~Morkhova, A.~P.~Nemudryi, A.~A.~Kabanov
\paper Machine learning as a tool to accelerate the search for new materials for metal-ion batteries
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 355--363
\mathnet{http://mi.mathnet.ru/danma479}
\crossref{https://doi.org/10.31857/S2686954323601033}
\elib{https://elibrary.ru/item.asp?id=56717856}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S476--S483
\crossref{https://doi.org/10.1134/S1064562423701612}
Linking options:
  • https://www.mathnet.ru/eng/danma479
  • https://www.mathnet.ru/eng/danma/v514/i2/p355
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
    Statistics & downloads:
    Abstract page:63
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024