Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Dokl. RAN. Math. Inf. Proc. Upr.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia, 2023, Volume 514, Number 2, Pages 318–332
DOI: https://doi.org/10.31857/S2686954323700248
(Mi danma476)
 

SPECIAL ISSUE: ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING TECHNOLOGIES

Eco4cast: Bridging predictive scheduling and cloud computing for reduction of carbon emissions for ML models training

M. Tiutiulnikova, V. Lazareva, A. Korovina, N. Zakharenkob, I. Doroshchenkob, S. Budennyyab

a Artificial Intelligence Research Institute, Moscow, Russia
b Sber AI Lab, Moscow, Russia
References:
Abstract: We introduce eco4cast$^1$, an open-source package aimed to reduce carbon footprint of machine learning models via predictive cloud computing scheduling. The package is integrated with machine learning models and employs an advanced temporal convolution neural network to forecast daily carbon dioxide emissions stemming from electricity generation. The model attains remarkable predictive accuracy by accounting for weather conditions, acknowledged for their robust correlation with carbon energy intensity. The hallmark of eco4cast lies in its capability to identify periods of temporal minimal carbon intensity. This enables the package to manage cloud computing tasks only during these periods, significantly reducing the ecological impact. Our contribution represents a compelling fusion of sustainability and computational efficiency. The code and documentation of the package are hosted on Github under the Apache 2.0 license.
Keywords: ESG, sustainable AI, green AI, sustainability, ecology, carbon footprint, CO$_2$ emissions, scheduling.
Presented: A. A. Shananin
Received: 02.09.2023
Revised: 15.09.2023
Accepted: 18.10.2023
English version:
Doklady Mathematics, 2023, Volume 108, Issue suppl. 2, Pages S443–S455
DOI: https://doi.org/10.1134/S1064562423701223
Bibliographic databases:
Document Type: Article
UDC: 004.8
Language: Russian
Citation: M. Tiutiulnikov, V. Lazarev, A. Korovin, N. Zakharenko, I. Doroshchenko, S. Budennyy, “Eco4cast: Bridging predictive scheduling and cloud computing for reduction of carbon emissions for ML models training”, Dokl. RAN. Math. Inf. Proc. Upr., 514:2 (2023), 318–332; Dokl. Math., 108:suppl. 2 (2023), S443–S455
Citation in format AMSBIB
\Bibitem{TiuLazKor23}
\by M.~Tiutiulnikov, V.~Lazarev, A.~Korovin, N.~Zakharenko, I.~Doroshchenko, S.~Budennyy
\paper Eco4cast: Bridging predictive scheduling and cloud computing for reduction of carbon emissions for ML models training
\jour Dokl. RAN. Math. Inf. Proc. Upr.
\yr 2023
\vol 514
\issue 2
\pages 318--332
\mathnet{http://mi.mathnet.ru/danma476}
\crossref{https://doi.org/10.31857/S2686954323700248}
\elib{https://elibrary.ru/item.asp?id=56717848}
\transl
\jour Dokl. Math.
\yr 2023
\vol 108
\issue suppl. 2
\pages S443--S455
\crossref{https://doi.org/10.1134/S1064562423701223}
Linking options:
  • https://www.mathnet.ru/eng/danma476
  • https://www.mathnet.ru/eng/danma/v514/i2/p318
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia Doklady Rossijskoj Akademii Nauk. Mathematika, Informatika, Processy Upravlenia
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024